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Mutations in the DLG3 Gene Cause Nonsyndromic X-Linked Mental
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We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with
moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member
of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain
development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-
terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ
domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins re-
sponsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study
all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the
ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA
receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic
plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have
been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting
or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual
impairment observed in individuals with DLG3 mutations.

X-linked mental retardation (XLMR) is a heterogeneous
disorder that is defined as either nonsyndromic (when
cognitive impairment is the sole definable clinical fea-
ture) or syndromic (when additional dysmorphic, neu-
rological, and/or metabolic features accompany the men-
tal deficit). To date, mutations in the following X-linked

Received March 29, 2004; accepted for publication May 11, 2004;
electronically published June 7, 2004.

Address for correspondence and reprints: Dr. F. Lucy Raymond,
Cambridge Institute of Medical Research, Department of Medical
Genetics, University of Cambridge, Cambridge CB2 2XY, United King-
dom. E-mail: flr24@cam.ac.uk

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7502-0017$15.00

genes have been associated with a nonsyndromic mental
retardation phenotype, although some of these genes are
also associated with a specific syndromic diagnosis:
FMR2, PAK3, OPHN1, GDI, IL1RAPL1, RSK2, ATRX,
ARHGEF6, MECP2, TM4SF2, SLC6A8, FACL4, ARX,
AGTR2, and PQBP1 (Gecz et al. 1996; Gu et al. 1996;
Allen et al. 1998; Billuart et al. 1998; D’Adamo et al.
1998; Carrie et al. 1999; Merienne et al. 1999; Guerrini
et al. 2000; Kutsche et al. 2000; Orrico et al. 2000;
Zemni et al. 2000; Couvert et al. 2001; Hahn et al. 2002;
Meloni et al. 2002; Stromme et al. 2002; Vervoort et al.
2002; Kalscheuer et al. 2003). All the genes identified
to date are rare causes of XLMR—since only a small
number of families have been found to carry mutations
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Figure 1 Mutations identified in the DLG3 gene. The sequence chromatogram of the affected proband (arrow) is shown below the wild-
type sequence. The respective pedigrees are presented above the chromatograms. A, The 1325insC mutation, identified in four affected males,
three obligate carrier females, and one mildly affected female. B, The 1218�5GrA mutation, detected in two of the affected brothers. Other
family members were unavailable for sampling. C, The 1535�1GrA mutation, identified in two affected brothers and their mother. The mutation
was absent in the sister and mother of the carrier female. D, The 1606CrG mutation, identified in two affected half brothers and their mother.
Other samples were unavailable.

in the same X-linked gene—and there remains a large
number of families with XLMR in which the causative
mutation has not been identified yet. To account for the
remaining unresolved families with XLMR, it has been
estimated that as many as 75 additional genes on the X
chromosome remain to be assigned to a mental retar-
dation phenotype (Ropers et al. 2003). This degree of
genetic heterogeneity has hampered the identification of
novel genes, since linkage information from different

families cannot be pooled easily to refine the disease
locus on the X chromosome. Consequently, in many
families, the refined loci contain a large number of can-
didate genes to screen for the presence of a causative
mutation. To address this problem, we have performed
automated high-throughput mutation detection to
search systematically for novel genes in families with
XLMR. The families with the smallest linkage intervals
have been prioritized for analysis, and each gene within
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Figure 2 Sequence analysis of DLG3. A, cDNA analysis of the 1218�5GrA mutation in a lymphoblastoid cell line from the proband
of family 356. A.i, Schematic representation of DLG3 exons 5–8. The dashed line indicates the position of the abnormal cryptic splice site.
A.ii, Sequence chromatogram of amplified cDNA with the use of primers from DLG3 exons 5 and 8 from mutant and control cell lines. The
wild-type and mutant amino acid residues are shown in black and red, respectively. A.iii, Position of cryptic splice-donor site (bold) identified
in exon 6. The 26-nt deletion due to abnormal splicing is indicated. The position of the 1218�5GrA mutation is indicated in red. B, cDNA
analysis of the 1535�1GrA mutation in a lymphoblastoid cell line from the proband of family 367. Bi, Schematic representation of DLG3
exons 5–9, demonstrating the abnormal splicing removal of exon 8. Bii, Sequence chromatogram of amplified cDNA performed by use of
primers from DLG3 exons 5 and 9 from mutant and control cell lines. The wild-type and mutant amino acid residues are shown in black and
red, respectively.

the refined interval was screened for mutations by DNA
sequencing. In the present study, we report the analysis
of a 2-Mb region in Xq13 and the identification of trun-
cating mutations in the human DLG3 gene (MIM
300189; GenBank accession number NM_021120) in
four unrelated families with XLMR.

Families with a history of at least two males with
significant intellectual impairment were recruited for the
study ( ). All families were examined by a clinicaln p 329
geneticist and were excluded from further study if there
was a known diagnosis, male-to-male transmission, an
abnormal G-banded karyotype within the past 5 years,
or an expansion in the fragile-X disease range detected

in an affected male. In appropriate families, haplotype
analysis was performed in-house, with the use of 48
microsatellite markers distributed along the X chro-
mosome at 5-cM resolution. This excluded areas of the
X chromosome from further analysis in these families.
In some families, haplotype analysis was performed ex-
ternally, and the positions of the refined loci were pro-
vided by the collaborating institutions. From this cohort,
11 families were analyzed in detail for mutations in novel
genes in the 2-Mb region of Xq13 described in this study.
Where families contained only affected sib pairs or
where insufficient samples were available for analysis,
no haplotype analysis was performed. In these families
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( ), sequencing was performed to search for ad-n p 318
ditional mutations only after a gene of interest had been
identified in the initial screen.

The locus responsible for disease in family 312
mapped to a 2-Mb region in Xq13, bound by markers
DXS8111 and DXS559, and contained 26 genes. Each
exon from these genes was sequenced in the proband
from this family and in one affected male from 10 ad-
ditional families with evidence of linkage overlapping
Xq13. A single-nucleotide insertion, 1325insC, was
identified in the human gene DLG3, also known as
“discs large homolog 3” (neuroendocrine dlg, Droso-
phila), in family 260 (fig. 1A). In this family, mental
retardation mapped to a 43-Mb interval from Xp11.23
to Xq21.31, which included the Xq13 genes under in-
vestigation. The DLG3 gene contains 19 exons and
encodes synapse-associated protein 102 (SAP102), a
member of the membrane-associated guanylate kinase
(MAGUK) protein family (Muller et al. 1996; Makino
et al. 1997). MAGUK proteins are important regulators
of epithelial polarity and are known to play a major role
in the organization of receptors and in downstream
signaling pathways within the synapse. The frameshift
mutation in family 260 is predicted to introduce a stop
codon at position 377, removing 54% of the normally
translated protein. The mutation was shown to segregate
with the disease in four affected males and three obligate
carrier females (fig. 1A).

Sequence analysis of DLG3 was extended to the re-
maining 318 families in the study. Three additional fam-
ilies harboring likely disease-causing mutations were
identified. In family 356, a putative splice-donor mu-
tation was identified in intron 6 (1218�5GrA) (fig. 1B).
Sequence analysis of DLG3 cDNA, prepared from a
lymphoblastoid cell line from the proband and amplified
with PCR primers sited within exons 5 and 8, identified
a predominant transcript that lacked the terminal 26 nt
from exon 6, introducing a frameshift and a premature
stop codon at position 326. This transcript appears to
use preferentially a cryptic splice-donor site located
within exon 6, rather than the mutated donor site (fig.
2A). This mutation was identified in two affected broth-
ers, but relevant samples were not available to track the
segregation of the variant further in this family.

In family 367, a splice-donor mutation was identified
in intron 8 (1535�1GrA) (fig. 1C). Sequence analysis
of DLG3 cDNA, prepared from a lymphoblastoid cell
line from the proband and amplified with PCR primers
sited within exons 5 and 9, identified an abnormal tran-
script lacking exon 8 (fig. 2B). This abnormal splicing
is predicted to introduce a frameshift and a premature
stop codon at position 383. The mutation was present
in the proband and his affected brother and was found
to have arisen de novo in their mother. In family 187,
a nonsense mutation was detected within exon 9

(1606CrG, S458X) (fig. 1D). This mutation was present
in two half brothers and their mother, but additional
samples from other family members were not available
for analysis. The sequence variants identified in families
260, 356, 367, and 187 were absent in 350 normal chro-
mosomes. The absence of additional SNP variants is in
contrast to the relatively high frequency of truncating
mutations identified in the families with XLMR under
investigation. A causative DLG3 mutation was not iden-
tified in family 312, despite the sequencing of the entire
coding sequence from both genomic DNA and cDNA
from an affected male. The possibility remains that the
disease-causing gene is as yet unassigned or unidentified
within Xq13 or that the mutation lies within regulatory
regions of the 26 genes analyzed to date.

The phenotype in all four families was that of non-
syndromic mental retardation. In family 260, formal IQ
test results of two affected individuals were in the mod-
erate mental retardation range (Wechsler Intelligence
Scale for Children [WISC] Verbal IQs of 49 and 54,
Performance IQs of 46 and 50, and Full Scale IQs of 43
and 48, respectively). One female in the pedigree had
mild mental retardation (WISC Verbal IQ 59–69, Per-
formance IQ 59–69, and Full Scale IQ 56–65) and also
carried the mutation. In this family, there was no cor-
relation between the X-inactivation pattern in lympho-
cytes and carrier status or clinical manifestation in fe-
males (data not shown). The possibility of a skewed
X-inactivation pattern in brain cells during neurodev-
elopment in the affected individual could explain the
phenotype, as could the presence of a phenocopy, since
mild mental retardation is a common occurrence in the
general population. In family 356, one male was severely
mentally retarded, with limited speech and an WISC Full
Scale IQ of 31. The other two affected brothers are de-
scribed as showing moderate mental retardation, with
some limited reading skills and the ability to hold a
reasonable conversation. Details on the uncle are un-
available, but he is said to be illiterate and intellectually
slow. In family 367, the affected males presented with
developmental delay and currently are attending special
schools for moderate learning disability. The X-inacti-
vation pattern of the carrier mother was not skewed in
favor of the normal allele (data not shown). In family
187, the two affected half brothers were severely men-
tally retarded, with IQs of 41 and 36 (Stanford-Binet
IQ test), respectively. Their obligate carrier mother had
a history of seizures, and her WISC Full Scale IQ was
71.

Synapse-associated proteins are thought to have im-
portant functional roles within neuronal cells, including
targeted distribution of receptors and ion channels
within specialized domains of the plasma membrane,
scaffolding of functional molecules, and modulation of
downstream signal transduction pathways (Fujita and
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Figure 3 Schematic representation of the SAP102 protein, showing the position of the introduced stop codons (red) in families with
DLG3 mutations. The wild-type amino acid sequence numbering is in black. The positions of the PDZ, SH3, and GK protein-interacting
domains are indicated.

Kurachi 2000). The SAP102 protein encoded by DLG3
is concentrated in the postsynaptic density (PSD) of ex-
citatory synapses and is the major MAGUK expressed
in neurons during early brain development (Sans et al.
2000). Along with other neuronal MAGUKs, such as
PSD93/chapsyn110, SAP97/dlg (MIM 601014), and
PSD95/SAP90 (MIM 602887), the SAP102 protein is
composed of three tandem PDZ domains at the amino
terminus, an src homology (SH3) domain, and a car-
boxy-terminal guanylate kinase (GK) domain. PDZ do-
mains are thought to mediate protein-protein interac-
tions and to bind to short amino acid motifs at the
carboxyl termini of interacting proteins (Muller et al.
1996; O’Brien et al. 1998). The PDZ domains of SAP102
interact with the (E)S/TXV/I/L recognition motif that is
present in the cytosolic C-terminus of the NR2 subunits
of the NMDA receptor (MIM 138252, MIM 138253).
This suggests a role for SAP102 in the clustering and
targeting of NMDA receptors in the PSD (Lau 1996;
Muller et al. 1996). The first two PDZ domains of
SAP102 also bind Sec8 (MIM 608185), a member of
the exocyst complex that is important in NMDA recep-
tor transport through the secretory pathway, indicating
an additional role for SAP102 at the early stages of
NMDA receptor processing (Sans et al. 2003). The SH3
region of SAP102 has been shown to bind calmodulin
(MIM 114180) in a calcium-dependent manner and also
to interact with PSD95/SAP90 (Masuko et al. 1999). It
has been proposed that these interactions may regulate
the clustering of neurotransmitter receptors, resulting in
structural changes within the synapse.

The DLG3 mutations identified in this study all trun-
cate SAP102 within or before the third PDZ domain
(fig. 3). The truncated SAP102 products are predicted
to have impaired affinity for the NR2 subunits of the
NMDA receptor and other neuronal protein-binding
partners. This putative impaired functionality could lead
to the disruption of the domain-dependent distribution
and anchoring of NMDA receptors within the plasma
membrane and to dysfunctional NMDA receptor sig-

naling. NMDA receptors have been implicated in the
induction of certain forms of plasticity, such as long-
term potentiation (LTP) and long-term depression (LTD)
in the hippocampus. LTP and LTD are long-lasting
activity-dependent increases and decreases in synaptic
efficacy, respectively (Bliss and Collingridge 1993;
Malenka 2003). These synaptic changes are thought to
be molecular mechanisms underlying the process of
learning and memory, and it is accepted that triggering
these changes requires synaptic activation at NMDA
receptors.

A mouse model for SAP102 has not been reported;
however, a mouse carrying a targeted insertion mutation,
introduced into the third PDZ domain of PSD95/SAP90,
has been described (Migaud et al. 1998). In PSD95/
SAP90 mutant mice, NMDA receptor–mediated syn-
aptic plasticity was dramatically altered, and the mice
demonstrated severely impaired spatial learning. In these
mice, the location and concentration of NMDA recep-
tors was normal, suggesting that PSD95/SAP90 is im-
portant in coupling NMDA receptors to downstream
signaling pathways, rather than in facilitating their
proper cellular location. The mutations we have iden-
tified in SAP102 are sited in an equivalent position to
that identified in the PSD95/SAP90 mutant mouse. Fur-
ther work is required to determine if mutated SAP102
leads to aberrant NMDA receptor localization directly
or to disrupted downstream signal transduction as a re-
sult of impaired binding to alternate signaling proteins.
Irrespective of the mechanism, altered synaptic plasticity
due to abnormal NMDA receptor signaling offers a
plausible mechanism to explain the mental deficit ob-
served in individuals with DLG3 mutations.

DLG3 is the first XLMR gene that is linked directly
to NMDA receptor–mediated signaling and synaptic
plasticity. The identification of four mutations in 4
(1.2%) of 329 families indicates that DLG3 makes a
significant contribution to the etiology of XLMR, rel-
ative to other genes described elsewhere. Detailed in-
vestigation of other genes involved in glutamate signal-
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ing pathways may identify further deleterious mutations
linked to intellectual impairment in humans.
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